Prof. Diana Golodnitsky

School of Chemistry
ביה"ס לכימיה עובד מחקר
Prof. Diana Golodnitsky
Phone: 03-6405358
Fax: 03-6409293
Office: Ornstein - Chemistry, 207


My major research activities are focused on the development and study of ion-transport phenomena in composite solid electrolytes and new nanostructured electrodes for advanced energy-storage devices. 


Solid electrolytes, in which ion conducting polymers are combined with superionic ceramics, could revolutionize electrochemical energy storage devices because of their nontoxicity, stability during operation and enhanced safety.  However, the interfacial resistance between the ceramic and polymer phases strongly suppresses the ionic conductivity and presents the main obstacle for these materials. The primary goal of our research is to gain fundamental understanding of mechanisms controlling lithium and sodium ion transport in polymer-ceramic composites with a distinct focus on reducing energy barrier for the interfacial ion transport and improving cation transference number. The work includes synthesis of novel polymer electrolytes and functionalized ceramic particles with large number of defects and low-activation barrier interface.


In the development of innovative power sources, freeing from design limitation along with the synthesis of reliable electrochemical materials with well-tuned features, is considered to be the most important prerequisite. Two approaches for the fabrication of flexible free form-factor batteries are under development in our group. The first one is a unique, single-step concurrent electrophoretic deposition (EPD) method for the preparation of a membrane-electrode assembly. We study the mechanism of EPD and the complex interplay between AC/DC voltage, zeta-potential, deposition rate, morphology, and electrochemical activity of different materials.


The second approach utilizes 3D printing techniques. We suggest a novel core/multi-shell free form-factor battery design and develop flexible all-solid-state electrolytes and electrodes by fused-filament fabrication (FFF).


In collaboration with Prof. S. Fleisher and Prof. E. Peled we have recently developed the Terahertz (THz) time-domain spectroscopy method for in-operando characterization of the silicon-electrolyte interphase dynamics in a working lithium battery. Strong correlation between THz data and electrochemical characterization allows monitoring the formation and evolution of solid electrolyte interphase (SEI) during reversible lithiation of the silicon anode. We plan to expand the use of THz method for the characterization of a variety of phenomena occurring on electrodes and in electrolytes of batteries.


  • M.Sc. in Physical Chemistry (summa cum laude), L. Ya. Karpov Physicochemical Scientific Research Institute, Moscow and State Technological University, Kazan, USSR, 1974

  • PhD in Electrochemistry, State Technological University, Kazan, USSR, 1984

Academic Appointments

  • Junior research fellow, Senior research fellow, Research Institute of Aircraft Technology, Kazan, USSR, 1974-1991

  • Research fellow, Senior research fellow, Ass. Prof., Full Prof., School of Chemistry, Wolfson applied Materials Research Center, 1992-Present

  • Board Member of the Israel National Research Centre for Electrochemical Propulsion (INREP), 2011-Present

  • The Raymond and Beverly Sackler Chair in Chemistry and Energy Science and the Member of Tel Aviv University Committee of Research and Development, 2018

  • President of Israel Electrochemical Society, 2020

Awards and Prizes

  • Bronze medal at the All-Union Exhibition of New Technology, Russia, 1978

  • Silver Medal Abner Brenner Award for an outstanding paper published in “Plating & Surface Finishing”, 1999

  • Outstanding achievements as Emigrant Scientist, 2010

  • Fellow of Royal Society of Chemistry, 2016

  • Fellow of Electrochemical Society, 2020

  • More than 130 articles, six book chapters, more than 230 conference publications, 19 patents. h-index – 47

  • Co-founder of three startup companies: DEVIS Electrocopy, Honeycomb Microbatteries, SiLiB

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>