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According to much of theoretical linguistics, a fair amount of our lin-
guistic knowledge is innate. One of the best-known (and most con-
tested) kinds of evidence for a large innate endowment is the argument
from the poverty of the stimulus (APS). An APS obtains when human
learners systematically make inductive leaps that are not warranted by
the linguistic evidence. A weakness of the APS has been that it is very
hard to assess what is warranted by the linguistic evidence. Current
artificial neural networks appear to offer a handle on this challenge, and
a growing literature has started to explore the potential implications
of such models to questions of innateness. We focus on Wilcox, Futrell,
and Levy’s (2024) use of several different networks to examine the
available evidence as it pertains to wh-movement, including island
constraints. WFL conclude that the (presumably linguistically neutral)
networks acquire an adequate knowledge of wh-movement, thus under-
mining an APS in this domain. We examine the evidence further,
looking in particular at parasitic gaps and across-the-board movement,
and argue that current networks do not succeed in acquiring or even
adequately approximating wh-movement from training corpora
roughly the size of the linguistic input that children receive. We also
show that the performance of one of the models improves considerably
when the training data are artificially enriched with instances of para-
sitic gaps and across-the-board movement. This finding suggests, al-
beit tentatively, that the networks’ failure when trained on natural,
unenriched corpora is due to the insufficient richness of the linguistic
input, thus supporting the APS.
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1 Background: Innateness and the Argument from the Poverty of the Stimulus

One way in which linguists have argued that humans are born with nontrivial biases is through
cases where speakers’ linguistic knowledge goes beyond what seems warranted by the data they
were exposed to. If humans systematically arrive at this knowledge given the data while linguisti-
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cally neutral learners exposed to similar data do not, then humans are not linguistically neutral:
they come to the task of language acquisition prepared. Reasoning of this kind is known as an
argument from the poverty of the stimulus (APS), and since its introduction by Noam Chomsky
over 50 years ago it has been central to the study of the human linguistic capacity.!> Here we
will focus on one APS, concerning wh-movement, but various other APSs have been discussed
in the literature, based on a range of empirical phenomena such as one-substitution (introduced
in Baker 1978), subject-auxiliary inversion (introduced in Chomsky 1971), and plurals within
compounds (introduced in Gordon 1985).

The APSs just mentioned (and others like them) have been taken to argue for nontrivial
innate biases in humans. For example, the APS from subject-auxiliary inversion has been taken
to support an innate bias for hierarchical transformations over linear ones. The APS from wh-
movement that we discuss below will similarly support an intricate bias that a linguistically neutral
learner is not expected to have. The same holds for other APSs in the literature. In this, these
APSs go beyond the early observation that children can produce and understand unboundedly
many sentences after encountering only a finite number of sentences (Chomsky 1957:15). While
generalizing from a finite input to an infinite language is perhaps not entirely trivial, it is something
that most learning algorithms do. And importantly, this ability does not imply any biases that a
linguistically neutral learner will not have.

While the APS has been central to linguistic reasoning, it has also generated much contro-
versy. Contesting a given APS requires challenging either the knowledge attained by humans or
the information available to the child learner. It is the latter that often comes under attack. The
reason for this vulnerability is that it is extremely difficult to assess exactly what information is
available to the child over the relevant time period (often years of exposure) and hard to tell what
a general-purpose, linguistically neutral learner would do with this kind of information. One can
try to look for pieces of evidence that seem relevant for the knowledge at stake—for example,
as done for the case of subject-auxiliary inversion in English by Legate and Yang (2002)—but
as noted by Lewis and Elman (2001), Perfors, Tenenbaum, and Regier (2011), and others, this
methodology runs the risk of underestimating the available information: even if we fail to find
the evidence we are looking for, a general-purpose learner might be able to take advantage of other
sources of information. This methodology also risks overestimating the available information:
even if we find several instances of the evidence we are after, a general-purpose learner might

! The general considerations behind the APS are discussed already in chapter 1 of Chomsky 1965. Further considera-
tions are discussed in Chomsky 1971:26-28, 1975:30ff., and 1980:42ff., as well as in much subsequent work.

In addition to the APS, linguists have identified other sources of evidence supporting the innateness of nontrivial
linguistic knowledge. For example, there are arguments from the richness of the stimulus, where a pattern that is clearly
represented in the input data and would be easily picked up by a linguistically neutral learner is simply ignored by human
learners. Evidence from typological asymmetries has also played a very important role in linguistic reasoning. A proper
discussion of such sources of evidence falls outside the scope of the present article, and in what follows we focus
exclusively on the APS.

2 Throughout the discussion, we set aside the question of whether the knowledge under consideration is specific to
linguistics (and, if so, how much of it is purely syntactic) or whether it is shared with other cognitive domains. Our sole
focus is on whether a neutral learner would be justified in acquiring the relevant knowledge on the basis of a given
linguistic input.
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treat those instances as noise and fail to draw the inference that we intuitively expect it to. In the
absence of an actual learner that can use the information that is available in an entire corpus, it
is just very hard to estimate whether the data support the knowledge under consideration.’

How then can we reason about the information available to the child and ask whether it
suffices to support the acquisition of a given piece of knowledge by a linguistically neutral learner?
In an ideal world, one would (a) take a sufficiently powerful learner that can be seen to not be
biased in favor of the relevant knowledge, (b) train this learner on a corpus that corresponds to
the linguistic input that children receive, and (c) check whether the learner has indeed acquired
the knowledge under consideration. In such an ideal world, one might perhaps be able to work with
an induction algorithm for unrestricted (type-0) grammars, or for a general-purpose programming
language such as Python (e.g., focusing on acceptors, programs that accept some strings over a
given alphabet and reject or enter an infinite loop on the rest). These (equally powerful) formalisms
are capable of representing the kinds of knowledge that linguists consider but can be seen as
linguistically neutral. In our case, while both unrestricted grammars and Python programs can
easily represent the equivalent of wh-movement, including the intricacies of islands, nothing about
either framework seems to favor such representations a priori. One can of course consider other
representational frameworks, including less powerful ones (e.g., context-sensitive grammars), as
long as they can still represent linguistic knowledge but are not biased in its favor. One would
still need to ensure that the learning algorithm itself does not bias the learner for or against
linguistic patterns, but this can be done in various ways, such as by using a linguistically neutral
prior within a Bayesian learner. After training on a developmentally realistic corpus, corresponding
to a few years of human linguistic experience, the knowledge acquired by the algorithm can then
be directly inspected at stage (c).

In the actual world, combining (a) through (c) is currently impossible. For many years, the
combination of (a) and (b) was already a major barrier. General program induction algorithms
of the kind just mentioned, for example, address (a) but fail on (b), since they are limited to very
small training corpora. On the other end of the scale, n-gram models can easily be trained on
very large corpora, thus addressing (b), but their representational capacity is much too limited to
capture or even to adequately approximate linguistic knowledge such as wh-movement. Other
models, such as probabilistic context-free grammars (CFGs), fall between these two extremes but
still typically struggle with the combination of (a) and (b) when it comes to patterns such as wh-
movement.

The challenge of assessing the information available to the child has become less of an
obstacle lately, with the advent of large language models (LLMs). These models, which rely on

3 See Pullum and Scholz 2002, Lidz, Waxman, and Freedman 2003, Foraker et al. 2009, Hsu and Chater 2010,
Berwick et al. 2011, Perfors, Tenenbaum, and Regier 2011, and Pearl and Sprouse 2013, among others, for much relevant
discussion.

In studies of analogous inductive leaps in other species, this worry regarding the input has been addressed by
controlling the information available to the learners (see, e.g., Dyer and Dickinson 1994). To a certain extent this can
be done with humans in experiments of artificial-grammar learning (see, e.g., Wilson 2006). But for the main APSs in
the literature, which concern the normal course of child language acquisition, controlling the information available to the
learner is not an option.
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modern architectures of artificial neural networks (ANNs), do not yet fully address any of (a)
through (c)—a matter that has been discussed in recent literature and that we return to below —but
they can be trained on very large corpora and are generally quite successful in acquiring sequential
dependencies.* This has allowed a large and growing literature to use these models to ask questions
related to the learning of linguistic knowledge by LLMs, often with specific reference to the APS.
Particularly relevant to our purposes here is work starting with Linzen, Dupoux, and Goldberg
2016 and including Bernardy and Lappin 2017, Chowdhury and Zamparelli 2018, Gulordava et
al. 2018, Kuncoro et al. 2018, Marvin and Linzen 2018, Wilcox et al. 2018, Wilcox, Levy, and
Futrell 2019, Bhattacharya and van Schijndel 2020, Chaves 2020, Warstadt et al. 2020, Huebner
et al. 2021, Ozaki, Yurovsky, and Levin 2022, Yedetore et al. 2023, and Wilcox, Futrell, and
Levy 2024, among others, that examines the preference of LLMs within minimal pairs. Here we
focus on the application of LLMs to the domain of wh-movement, following Chowdhury and
Zamparelli 2018, Wilcox et al. 2018, Bhattacharya and van Schijndel 2020, Chaves 2020, Warstadt
et al. 2020, Ozaki, Jurovsky, and Levin 2022, and Wilcox, Futrell, and Levy 2024. In particular,
we examine the claim by Wilcox, Futrell, and Levy (2024; WFL) that current models debunk an
APS in this domain: namely, that the input is insufficiently rich to allow a general-purpose learner
to acquire wh-movement.’

The present article extends WFL’s probing of LLMs’ knowledge of wh-movement, arriving
at conclusions that are at odds with those of WFL. We start, in section 2, with a brief overview
of the general setup for the rest of the article. Among other things, we discuss how LLMs can
be used as tools for assessing the information in a given corpus without assuming that these
models are cognitively plausible in any way and without even asking whether these models have
achieved an adequate knowledge of the pattern under consideration.® Rather, we treat these models
as proxies for future learners and ask only whether these proxies provide a reasonable approxima-
tion of the target pattern. In section 3, we discuss the success of LLMs in simple cases of wh-
dependencies, as noted by WFL. In section 4, we show that the scope of the LLMs’ success is
rather limited. In particular, LLMs fail to adequately approximate human knowledge of a much-
studied family of cases, falling under the labels of parasitic gaps and across-the-board movement,
in which certain additional gaps make an otherwise problematic gap inside an island acceptable.
It is cases such as these that are typically taken by linguists to suggest an APS, and our findings
show that the performance of current LLMs does not, in fact, debunk this APS. In section 5, we

4 Long before the current models, earlier ANN architectures were used in debates of the APS, and in particular in
attempts to argue against various versions of it (see Elman et al. 1996, Lewis and Elman 2001, and Reali and Christiansen
2005, among others, and see Berwick et al. 2011 for a critical analysis of some earlier attempts). Early ANNs, however,
were limited in their capacities and generally trained on small corpora, and it is unclear whether they could be used to
reason about whether a corpus that roughly corresponds to children’s linguistic exposure supports the acquisition of
complex grammatical knowledge. In this sense, these earlier models were not yet capable of addressing the combination
of (a) and (b). The ability of current models to train on realistically large corpora is a helpful step toward using them
constructively in debates about the APS.

5 See Pearl and Sprouse 2013 and Phillips 2013 for earlier discussion of the APS in the context of acquiring islands.

6 Our results do bear on the question of the cognitive plausibility of LLMs, however. In particular, since our results
are negative they provide further evidence, if such was needed, that current LLMs are not cognitively plausible models
of human linguistic cognition, contra Piantadosi 2023. See Katzir 2023, Kodner, Payne, and Heinz 2023, Moro, Greco,
and Cappa 2023, and Rawski and Baumont 2023, among others, for additional discussion.
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ask whether the LLMs fail only due to their own limitations or whether their failure also reflects
the insufficient richness of their training data. We address this question by retraining one of the
models on corpora that are clearly not impoverished with respect to the relevant patterns and
showing that the performance of the model improves significantly on the enriched corpora. This,
in turn, strengthens the APS, if also tentatively. Section 6 concludes.

2 The General Setup

Simplifying considerably, a gap, such as the missing complement of with in (1a) and (1c), appears
if and only if it is preceded by an appropriate filler, such as the wh-phrase who in (1a) and (1b).
When there is both a filler and a gap (1a) or neither (1d), the result is grammatical; when there
is a filler and no gap (1b) or a gap and no filler (1c), the result is ungrammatical.”

(1) a. Iknow who you talked with ___ yesterday. (s, +gap)
b. *I know who you talked with Mary yesterday. (i ier,—gap)
c. *I know that you talked with ___ yesterday. jier, +gap)
d. Iknow that you talked with Mary yesterday. (jier,—gap)

There is much further nuance to wh-movement, some of which we will briefly mention
below. For now, let us consider how one might check if the input data are rich enough for a
linguistically neutral learner to acquire the knowledge of wh-movement. We mentioned earlier
that in an ideal world, we could try to evaluate a given APS by (a) taking a sufficiently powerful
learner that can be seen to not be biased in favor of the relevant knowledge, (b) training it on a
developmentally realistic corpus, and (c) checking whether it has indeed acquired the knowledge
under consideration. We also mentioned that current LLMs do not quite handle any of (a)—(c).
In the remainder of this section, we will review some of the shortcomings of LLMs with respect
to each of (a)—(c) and discuss how LLMs can still be helpful (if also inconclusive) in studying
the APS.

2.1 Powerful and Unbiased?

We do not know how powerful LLMs are. Representationally, recurrent neural networks have
been shown to be Turing-complete under idealized assumptions of infinite precision and computa-
tion time (Siegelmann and Sontag 1991, 1995). Under realistic assumptions, however, the repre-
sentational capacity of recurrent neural networks is much more limited, as shown for example
by Weiss, Goldberg, and Yahav (2018) and Merrill et al. (2020). A similar situation obtains with
the more recent Transformer architecture (see survey in Strobl et al. 2023). Moreover, even this
limited representational capacity of ANNs under realistic assumptions is often not attained in
practice, and there is evidence suggesting that standard training methods prevent at least some
models from acquiring key patterns (see Lan et al. 2022, El-Naggar et al. 2023, Lan, Chemla,
and Katzir 2023, 2024).

7 In order to make it easier to alternate the *iller condition, and following WFL, we embed the relevant examples
under I know: I know who . .. (+filler) vs. I know that . . . (—filler).
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Given these limitations, we will avoid assuming that current models can learn the pattern
of wh-movement and only rely on their ability to provide a reasonable approximation of the
pattern. If a given ANN can reach such an approximation from a sufficiently rich corpus, we can
use it as a proxy for a good general-purpose learner, even if the ANN is not such a learner itself.
We can then use the ANN to study the APS. If the model provides a reasonable approximation
of wh-movement from a developmentally realistic corpus, this suggests that a good general-
purpose learner might learn the correct pattern from that corpus and that the APS in this domain
does not hold. And if the model fails to reach such an approximation, this suggests that a good
general-purpose learner might not learn the correct pattern from that corpus and that the APS in
this domain stands.

The use of ANNSs as proxies still requires understanding how their biases relate to the approxi-
mations of the relevant linguistic patterns. Unfortunately, because of how poorly these models
are understood, we cannot say with any certainty whether a given ANN is linguistically neutral,
and if not, whether its biases push it in the direction of a given linguistic pattern. Until more is
known about these biases, and as correctly cautioned by Rawski and Heinz (2019), any claims
about the neutrality of these models must be taken as tentative. Still, it strikes us as reasonable
to assume that current LLMs are not particularly biased against the linguistic dependencies under
consideration. This is especially so since these models have been developed over the past decades
so as to succeed in capturing key patterns in linguistic sequences; therefore, if they do have
linguistically relevant biases after all, those are likelier to be in favor of the patterns under consider-
ation than against them. Consequently, if the models fail to acquire an adequate approximation
of the relevant dependencies, this failure can be taken to be informative. More directly, and as
mentioned above, we will show in section 5 that with richer training data, at least one model
improves its approximation of the pattern of wh-movement, which will suggest that the failure
of the model on its original training data is due not solely to its biases and other limitations but
also to the lack of sufficient evidence in the data.

2.2 Training on Developmentally Realistic Corpora?

As discussed in detail by Warstadt and Bowman (2022), current models are not trained on develop-
mentally realistic corpora. Such a corpus would be the equivalent of the relevant input that a
child receives over the first few years of life. But the training data for current models are more
informative than the input to the child in some ways and less informative in others. They are
more informative, for example, in that they are orders of magnitude larger than what humans are
exposed to in a whole lifetime. They are less informative in that they are purely textual and do
not reflect environmental and social cues, prosody, and input from modalities other than speech,
all of which are in principle available to children. See Warstadt and Bowman 2022 for further
discussion.

The particular pattern that we discuss here can arguably be investigated on the basis of the
information available in standard training corpora. Of course, this is not to say that the dependen-
cies under consideration do not depend on extratextual cues (a matter of ongoing discussion in
the literature). But if, as WFL suggest and as our results further support, the basic pattern of wh-



LLMS AND THE ARGUMENT FROM THE POVERTY OF THE STIMULUS 7

movement can be approximated on the basis of text, there is no reason to think that the further
approximation of parasitic gaps and across-the-board movement will crucially require extratextual
cues. This point will be reinforced by the evidence from retraining in section 5.

As to the size and quality of the text in our training data, we use a range of corpora, reviewed
immediately below, that span the spectrum from the very small (CHILDES) through mid-size
(Wikipedia) to the very large (the training sets for GPT-2/3/j). We do so in an attempt to make
up for the inadequacy of individual corpora to some extent, but we acknowledge that this is at
best a partial remedy.

The models we use in our evaluation are the following, also summarized in table 1: an LSTM
(long short-term memory model) and a Transformer from Yedetore et al. 2023, both of which
were trained on the CHILDES corpus of child-directed speech (MacWhinney 2014);® an LSTM

Table 1

Training data size of the seven language models considered here, and the human
linguistic experience equivalent to these data sizes. Human equivalents follow
Wilcox, Futrell, and Levy’s (2024) assumption (based on Hart and Risley 1995)
that children are exposed to around 30,000 words per day, or around 11 million
words per year.

Model ~Tokens in training data ~Human equivalent

CHILDES LSTM 8.6 million 10 months
(Yedetore et al. 2023)

CHILDES Transformer
(Yedetore et al. 2023)

Wikipedia LSTM 90 million 8 years
(Gulordava et al. 2018)

Wikipedia Transformer

GPT-2 (Radford et al. 8 billion 730 years
2019)

GPT-3 (Brown et al. 114 billion 10,300 years
2020)

GPT-j (Wang and 402 billion 36,540 years

Komatsuzaki 2021)

8 The models in Yedetore et al. 2023 were trained on utterances of 52 children between the ages of 6 months and
12 years, from the North American English subset of the CHILDES corpus. The total training size amounts to 9.6 million
words, which is considerably fewer words than children typically receive by the time they exhibit knowledge of the
pattern under consideration here. Qualitatively, on the other hand, this training corpus is arguably more realistic than the
much larger training corpora used for the remaining models.

Out of ten models per architecture (LSTM/Transformer) trained in Yedetore et al. 2023 with different random seeds,
we use the model with the best test perplexity.
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trained on English Wikipedia (Gulordava et al. 2018); a Transformer trained on English Wikipedia;®
Open AI’s GPT-2 (Radford et al. 2019); OpenAI’s GPT-3 (Brown et al. 2020); and GPT-j (Wang
and Komatsuzaki 2021).'° The LSTM trained on English Wikipedia and both GPT-2 and GPT-
3 are used by WFL in their evaluation.'!

In order to get a very rough sense of the number of years of linguistic experience that a
given training corpus corresponds to, we follow common practice (used also by WFL) based on
Hart and Risley’s (1995) estimates about the number of words that American children typically
hear during acquisition. According to these estimates, the models just mentioned were exposed
to amounts of data ranging from 10 months of linguistic experience (CHILDES LSTM and
Transformer) through 8 years of linguistic experience (Wikipedia LSTM and Transformer) to
between 10 and 500 human lifetimes (GPT-2, GPT-3, and GPT-j); see table 1. WFL note that
the linguistic experience of some of the models is well above that of children in terms of size
and could thus weaken their argument against the APS in case of successful learning by the
models. However, in the case of a negative result, as in the current work, a large training corpus
only makes failures to learn more informative.

2.3 Inspecting LLM Knowledge?

As mentioned, LLMs are very opaque. While symbolic models such as CFGs (whether probabilis-
tic or not) can generally be inspected directly so as to reason about the knowledge that they
incorporate, inspecting LLMs in a similar fashion is not currently possible. One might try to
follow standard practice in linguistics and study the knowledge of LLMs from the outside, by
examining which sentences they accept. We could then check, for example, whether a particular
LLM believes that a given continuation such as yesterday or Mary is grammatical following a
given prefix such as I know who/that you talked with in (1). Unfortunately, however, we cannot
currently check whether an LLM takes a given sentence to be grammatical. In fact, it is not clear
whether current models even have a notion of grammaticality to begin with.

What LLMs do tell us is how likely they consider any given continuation. The problem is
that grammaticality and probability are generally very different notions. And while the two are
correlated—many ungrammatical continuations are also unlikely on any sensible notion of proba-

® We added this Transformer since we wanted to evaluate the information in the English Wikipedia training corpus
(the most realistic developmentally in terms of size of all the training corpora under consideration) using a more current
architecture than the LSTM that WFL use. We used one of the large Transformer architectures used in Yedetore et al.
2023: 8 layers, hidden and embedding size 1600, and 16 attention heads, trained using the same training regime. Since
the current task is limited to single sentences, we lowered the Transformer’s context size to 30 (compared with 500 in
Yedetore et al. 2023), closer to the average sentence size in the Wikipedia dataset (27.2).

19 Model version text-davinci-003, the latest supported version not fine-tuned using reinforcement learning from
human feedback (RLHF) for chat and other applications; however, the model is still trained with supervised fine-tuning,
and it is proprietary. See https://archive.today/2023.10.07-060351/https://platform.openai.com/docs/models/gpt-3-5 for
OpenAI’s documentation retrieved October 2023 (archived snapshot).

'WEFL also use another LSTM, from Jozefowicz et al. 2016. We chose not to include that model in our evaluation
since it is extremely slow to work with. For WFL’s evaluation, which used a small number of sentences, this was not a
problem, but our evaluation relied on a much larger number of sentences, making Jozefowicz et al.’s (2016) model
impracticable.



LLMS AND THE ARGUMENT FROM THE POVERTY OF THE STIMULUS 9

bility, and grammatical continuations are sometimes probable—this correlation is far from perfect
(see Chomsky 1957, Berwick 2018, and Sprouse et al. 2018, among others, for relevant discus-
sion). In particular, many grammatical continuations are highly unlikely; for example, splat is a
grammatical but unlikely continuation of John would like to eat a freshly made. And in some
cases an ungrammatical continuation can be likely; for example, is is a likely but ungrammatical
continuation of The keys to the cabinet, an instance of so-called agreement attraction (see, e.g.,
Bock and Miller 1991, Wagers, Lau, and Phillips 2009).'2

In the cases we are interested in here, however, probability and grammaticality are often
quite well aligned, and—as in many other cases discussed in the literature mentioned earlier on
evaluating LLMs on minimal pairs—it is easy to find examples such as (1) in which the grammati-
cal continuation is significantly more probable than the ungrammatical one on any sensible notion
of probability. So if we focus on such cases where grammaticality and probability are aligned,
and if ANNs are sufficiently good learning models—at least, good enough to provide a crude
approximation of the pattern under consideration—then we can use the probabilistic predictions
of the resulting LLMs to evaluate the APS by comparing their probability assignments within
minimal pairs. If a given LLM systematically assigns a much higher probability to the grammatical
continuation, one potential explanation for this success is that the pattern of wh-movement is
represented sufficiently well in the model’s training data for the model to approximate it. While
it remains unclear, as mentioned above, whether current ANNs themselves have a representation
of grammaticality as distinct from probability or whether they can learn the true pattern, their
success when trained on developmentally realistic corpora would suggest that a good linguistically
neutral learner that does have such representational abilities might acquire the pattern. Conversely,
if the LLM does not systematically assign a much higher probability to the grammatical continua-
tion, one possible explanation for this failure is that the pattern of wh-movement is not sufficiently
well represented in the input data to merit its approximation by the model. This, in turn, would
suggest that a good linguistically neutral learner will not acquire the pattern from the input data.
In this way, LLMs—even if their representational inadequacies prevent them from providing
more than a crude approximation of the pattern under consideration—can serve as useful proxies
for future general-purpose learners and help us reason about the information available in the input
data.

Care is needed in interpreting the performance of the models, even when treated as proxies
for future learners. As Kodner and Gupta (2020) and Vazquez Martinez et al. (2023) note, clearly
inadequate models can still pass current benchmarks of minimal pairs. More generally, it is
possible for a model to either succeed by accident or fail by accident. As we discuss below, and
in line with recent literature, we will try to lessen the worry of uninformative success or failure:
in addition to using a wide range of models trained on many different corpora, as mentioned

12 Agreement attraction is a performance error. Speakers make such errors when distracted or in a hurry but less so
when given more time. ANNs do not make this distinction: when they give a higher probability to an ungrammatical
continuation, their response reflects a faulty knowledge rather than a resource problem. This serves to further illustrate
the inadequacy of ANNs as models of linguistic cognition but does not pose a problem for our use of these models as
a tool for assessing the informativeness of the input data.
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above, we will vary the lexical choices within our minimal pairs and also control to some extent
for very local preferences that the models might have and that could obscure their approximation
of the pattern of wh-movement. But these remain partial remedies, and any positive conclusions
from the evaluation must be qualified accordingly. This worry does not affect our argument
against WFL’s conclusions: in this case, WFL make the positive claim that LLMs refute the APS,
and we show (in section 4) that current LLMs provide no basis for such a conclusion. But the
worry does affect our attempt (in section 5) to show that LLMs strengthen the APS. While we
try to make the case that the failure of at least one of the models reflects the poverty of the
stimulus, our conclusions in this part must remain tentative.

3 LLMs Succeed in Very Simple Cases of Wh-Movement

How rich is the input, then, when it comes to filler-gap dependencies of the wh kind? In very simple
cases such as (1), the LLMs considered by WFL assign a higher probability to the grammatical
continuation than to the ungrammatical one. Above we mentioned that success in cases such as
those considered here, where probability and acceptability are aligned, should involve not just a
higher probability to the grammatical continuation but a much higher one. However, in order to
give the models a better chance of refuting the APS, we will adopt a very lenient criterion for
success and only ask if the probability assigned to the grammatical continuation is higher than
that assigned to the ungrammatical one, without taking into account how much higher it is. This
will allow a network to be considered successful even if it prefers the grammatical continuation
by the slightest of margins. This lenient condition for success will strengthen our conclusions
from cases of failure, which we get to in the sections below: if a network fails even with this
lenient condition of success, this failure can be taken seriously.

Here and below, we will follow WFL (and the psycholinguistic literature that they build on)
and illustrate using surprisal values, where the surprisal of x is —log P(x), which is simply the
negative of the logarithmically scaled probability of x.!* The lower the probability the higher the
surprisal; when the probability approaches 0, the surprisal tends to infinity, and as the probability
approaches 1, the surprisal tends to 0. Since higher probability corresponds to lower surprisal,
support for the model will come from its assigning lower surprisal to a grammatical continuation
than to an ungrammatical one, which, as mentioned, is what WFL indeed find in simple cases.

Figure 1 illustrates the preference of the models considered here for the grammatical continua-
tion over the ungrammatical one in a very simple case by plotting surprisal values for sentences (1a)
and (1b). All models assign a lower surprisal value (i.e., a higher probability) to the grammatical
continuation yesterday in the gapped sentence than to Mary. This suggests (albeit weakly) that
the input is sufficiently rich for a general-purpose learner to acquire from it an approximation of
some basic aspects of wh-movement.

WFL further suggest that the LLMs go beyond the basic knowledge that fillers and gaps go
hand in hand. Specifically, they claim that LLMs are aware of islands (Ross 1967): configurations
in which a gap is ungrammatical even if there is a filler upstream. We illustrate this with (2).

13 WFL’s methodology includes looking not just at +filler cases, as in (la) and (1b), but also at the corresponding
—filler ones, as in (Ic) and (1d). We will follow WFL in this in our discussion in sections 4.3 and 5, but for the present
we will attempt to keep the presentation simple by considering only +filler pairs.
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Figure 1

Raw surprisal values output by the large language models for the grammatical (1a), depicted with solid gray
lines, and ungrammatical (1b), depicted with dark dashed lines. All models correctly output lower surprisal
values for the grammatical continuation.

(2) *I know who [[the question whether ___ jumped] surprised Mary yesterday].

While, as discussed above, a filler upstream generally increases the LLMs’ expectation of
a gap downstream, this expectation should be reduced within the subject of the embedded clause
in (2). This subject is an island to movement, and extraction from within it is unacceptable and
presumably highly unlikely. Figure 2 shows that the models are indeed surprised by the gap in
(2), suggesting that their training corpora are informative with respect to this aspect of wh-
movement.'*

14 The literature discusses various cases in which extraction from subjects (and other islands) is judged acceptable
by speakers. Here and below, we focus on relatively simple examples in which speaker judgments are clear, and our
evaluation will concern the extent to which LLM preferences approximate these clear speaker judgments.
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Figure 2

Raw surprisal values for the island violation sentence in (2), depicted with solid gray lines, and a variant
of the sentence with no island violation (we use John instead of the island-internal gap), depicted with dark
dashed lines. All models are correctly surprised at the island-internal gap. Note that since the variant with
John has no downstream gap that would correspond to the upstream filler, it is ungrammatical. For a
grammatical version, one could replace Mary with a gap. This matter, however, is orthogonal to the surprisal
at the island-internal gap, which is what this figure illustrates.

WEFL consider a range of similar cases and conclude that linguistically neutral learners can

acquire the intricacies of wh-movement from the input data and that consequently the APS in
this domain falls apart.

4 LLMs Fail on Slightly More Complex (But Still Simple) Cases of Wh-Movement

We now turn to a well-studied nuance of islands: in various cases, an otherwise impossible gap
inside an island is made possible by a separate gap elsewhere. For example, while (3a), with a
subject-internal gap, is ungrammatical, its counterpart in (3b), which has an added gap in the
direct object position of the main clause, is grammatical. This phenomenon is known as a parasitic
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gap (PG): on the basis of the direct object gap, the gap inside the subject island becomes acceptable
parasitically.!®

(3) a. *I know who [John’s talking to ____ ] is going to annoy you soon.
b. I know who [John’s talking to ___ ] is going to annoy ___ soon.

Somewhat similarly, while (4a), with a gap inside a conjunct, is ungrammatical, its counter-
part in (4b), where there is a gap in the other conjunct as well, is grammatical. This phenomenon

is known as across-the-board (ATB) movement.'®
(4) a. *I know who John [met ___ recently] and [is going to annoy you soon].
b. Iknow who John [met ___ recently] and [is going to annoy —__ soon].

4.1 An Initial Failure

Do LLMs approximate the patterns of PGs and ATB movement? Both Wilcox et al. (2018) and
Chaves (2020) mention PGs and ATB movement in passing, but we are not familiar with attempts
in the literature to evaluate the success of LLMs in approximating these patterns. Figures 3—4
illustrate that all the LLMs we are considering here fail on (3a) and (4a), even on our very lenient
condition of success: they do not just fail to assign a much higher probability to the grammatical
continuation over the ungrammatical one in this simple case; they actually prefer the ungrammati-
cal continuation. This seems to indicate that the ANN s have failed to acquire a good approximation
of the relevant constructions, which in turn challenges WFL’s claim that LLMs undo the APS
in this domain: for LLMs to undo this APS, they would need to provide a passable approximation
of PGs and ATB movement, but their performance above does not suggest such an approximation.

If our entire empirical basis is the failure we just noted, however, our conclusions will remain
weak. This is so for the following reason: while the behavior of a good linguistically neutral
learner on the examples above would indeed be informative about the APS, it is possible that
current ANNs are simply not sufficiently good learners in this regard, and the inadequacies of
the ANNSs can in turn significantly limit our conclusions.

In the remainder of the present section, we attempt to address the general concern about the
adequacy of the ANNs, which we break down into two separate investigations. We first ask
whether the failure that we just noted is an accident of the particular lexical choices that we used
(section 4.2). We then ask, building on WFL’s methodology, whether the failure was due to a
general preference for ungapped continuations that is so strong as to override a preference for
the correct form (section 4.3). Our investigations concern ways in which the LLMs might have
an approximation of PGs and ATB movement that is obscured by weaknesses of the models. By

15 Not all impossible gaps can be rescued in this way. For example, adding further gaps does little to improve (2).

16 We set aside the important question of what stands behind PGs and ATB movement and whether the two are
related. See Ross 1967, Williams 1977, 1990, Engdahl 1983, Hatk 1985, Munn 1992, Postal 1993, Fox 2000, Nissenbaum
2000, and Hornstein and Nunes 2002, among others, for discussion.
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Figure 3

Raw surprisal values for the ungrammatical sentence (3a), which violates a subject island, depicted with
dark dashed lines, and its grammatical variant (3b), depicted with solid gray lines. For measuring the model’s
expectation for a gap, surprisal is measured at the adverb soon, which indicates a gap. This is compared
with surprisal at John, which plugs the gap at the same position. All networks wrongly assign a higher
surprisal value to the grammatical continuation.

helping these LLMs at test, we aim to reveal this approximation if it exists, but in both sections
we will fail to find evidence for it. This, in turn, will strengthen the challenge to WFL’s claim:
even with additional help at test, the models show no evidence that might undermine the APS.

4.2 Lexical Accident?

Our illustration above of how the LLMs prefer the ungrammatical continuation over the grammati-
cal one for PGs and ATB movement used one pair of sentences for each of the two patterns. This
raises the obvious worry that the failure of the LLMs reflects some accidents of the specific
sentences that we used. This worry is lessened to some extent by the fact that we looked at a
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Raw surprisal values for the ungrammatical sentence (4a), which violates the Coordinate Structure Constraint
(dark dashed lines), and its grammatical variant (4b), across-the-board movement (solid gray lines). All
networks wrongly assign a higher surprisal value to the grammatical continuation soon than to John.

broad range of different models trained on different corpora: it seems unlikely that all these
models and all these training corpora just happen to have the same blind spot when it comes to
the specific sentences that we used above and that otherwise the models approximate the patterns
well. Still, it is clearly useful to examine more systematically what happens when we vary the
lexical choices for the two patterns.

In order to test the performance of the networks on PG and ATB movement sentences more
broadly, we systematically varied the lexical choices in (3) and (4), repeated here.

(5) a. *I know who [John’s talking to ___ ] is going to annoy you soon.
b. Iknow who [John’s talking to ___ ] is going to annoy —__ soon.
(6) a. *I know who John [met ___ recently] and [is going to annoy you soon].

b. Iknow who John [met ___ recently] and [is going to annoy —__ soon].
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Table 2

Excerpt from the context-free grammar used to generate parasitic gap sentences
for the experiments in section 4.3, and sample sentences generated from it.
Underlined words alternate according to the =filler condition; words in
boldface mark the position where the * gap condition becomes evident and
surprisal is measured.

Parasitic gap grammar

S — (PREAMBLE) (= F) (= G)

(PREAMBLE) — I know

(+F) — who (NAME1) (GEN) (NP)

(—F) — that (NAME1) (GEN) (NP) (NAME2)

(+G) — (LINK) (V) (ADV)

(=G) — (LINK) (V) (OBJ) (ADV)

(GEN) = ’s

(NP) — (NP_SIMPLE) | (NP_COMPLEX)

(NP_SIMPLE) — (GERUND)

(NP_COMPLEX) — (N_EMBEDDED) ‘to’ (V_EMBEDDED)
(LINK) — ‘is about to’ | ‘is likely to’ | ‘is going to’ | ‘is expected to’
(V) — ‘bother’ | ‘annoy’ | ‘disturb’

(OBJ) — ‘you’ | ‘us’ | ‘Kim’

(GERUND) — ‘talking to’ | ‘dancing with’ | ‘playing with’
(N_EMBEDDED) —> ‘decision’ | ‘intent’ | ‘effort’ | “attempt’ | “failure’
(V_EMBEDDED) — ‘talk to’ | ‘call’ | ‘meet’ | ‘dance with’ | ‘play with’
(ADV) — ‘soon’ | ‘eventually’

= I know who John’s talking to is going to annoy S00N. (4 fiier +gap)

= *I know who John’s talking to is going to annoy you SOON. (s —gap)

= *I know that John’s talking to Mary is going to annoy SOON. (fier, +gap)

= I know that John’s talking to Mary is going to annoy you Soon. (fier,—gap)

We generated the sentences by template, using simple CFGs. Excerpts from these grammars
and a sample of the generated sentences are given in tables 2 and 3. The full grammars are given
in online appendix A (https://doi.org/10.1162/ling_a_00533).!” A total of 8,064 sentence tuples
were generated for PGs and 6,624 for ATB movement. For a given model and a given pair of
sentences, we looked at the surprisal of the model at the critical point on each member of the
pair. For (5), for example, we checked whether after the shared prefix I know who [John’s talking
to ___ | is going to annoy . . . surprisal was higher at the ungapped, ungrammatical continuation
you as in (5a) than in the gapped, grammatical continuation soon as in (5b). If it was—and in
line with our lenient condition for success that is satisfied by any kind of preference for the
grammatical continuation regardless of its magnitude—this counted as a success. We will write A

17 All experimental material and the source code are available at https://github.com/Oxnurl/llm-poverty-of-stimulus.



LLMS AND THE ARGUMENT FROM THE POVERTY OF THE STIMULUS 17

Table 3

Excerpt from the context-free grammar used to generate across-the-board
sentences for the experiments in section 4.3, and sample sentences generated
from it. Underlined words alternate according to the =*filler condition; words in
boldface mark the position where the =+ gap condition becomes evident and
surprisal is measured.

Across-the-board grammar

S — (PREAMBLE) (+F) (LINK) (+G)
(PREAMBLE) — I know

(+F) — who (NAMEL1) (VP1) (ADV1)

(—F) — that (NAME1) (VP1) (NAME2) (ADV1)
(+G) — (LINK) (VP2) (ADV2)

(=G) — (LINK) (VP2) (OBJ) (ADV2)
(LINK) — ‘and is going to’

(ADV1) — ‘recently’ | ‘lately’

(ADV2) — ‘soon’ | ‘today’ | ‘now’

(VP1) — (VP1_SIMPLE) | (VP1_COMPLEX)
(VP1_SIMPLE) — ‘met’ | ‘saw’

(VP2) — (VP2_SIMPLE) | (VP2_COMPLEX)
(VP2_SIMPLE) — ‘hug’ | ‘slap’ | ‘kiss’
(OBJ) — ‘you’ | ‘us’ | ‘Kim’

= I know who John met recently and is going to hug soon. (e, +gap)

= *I know who John met recently and is going to hug you soon. (i ier,—gap)
= *I know that John met Bob recently and is going to hug seon. (e, 1 gap)

= I know that John met Bob recently and is going to hug you soon. (ier.—gap)

= Surprisal(ungapped continuation|shared prefix) —Surprisal(gapped continuation|shared pre-
fix), and A zy., to indicate that the shared prefix has an upstream filler. Using this notation, we
can write the condition for success as A4, > 0.

Figure 5 plots the results of examining A_z,, preferences for the PG and ATB movement
datasets. In both cases, the best performance by a large margin is that of GPT-3, with 40.9%
accuracy on the PG dataset and 71.6% accuracy on the ATB movement dataset. We are not sure
to what extent these numbers can be taken to indicate an approximation of the relevant patterns
by GPT-3. If it is a success, then it is hardly a striking one. Nor is it particularly informative:
recall that GPT-3 has been trained on the equivalent of 10,000 years of linguistic experience (and
is also further improved manually in various ways), so even if it approximates the relevant patterns,
this does not indicate that a general-purpose learner would acquire the relevant knowledge from
a developmentally realistic corpus of just a few years of linguistic experience. Setting GPT-3
aside, the models perform very poorly, with the best performance on PGs being Wikipedia LSTM’s
18.1% accuracy and the best performance on ATB movement being CHILDES Transformer’s
30.1% accuracy. In other words, the models do not just fail to prefer the grammatical continuation
over the ungrammatical one, they positively prefer the ungrammatical continuation in the vast
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Figure 5

Model accuracy on the A ., condition for the parasitic gap (PG) and across-the-board (ATB) datasets.
Accuracy is measured as the ratio of cases where the model assigns a higher probability to the grammatical
sentence continuation.

majority of the pairs. Helping the LLMs by testing them on a wide range of lexical choices, then,
fails to reveal any evidence that the models have approximated the patterns of PGs and ATB
movement.

4.3 A Preference for Ungapped Continuations?

Our second investigation, building on WFL’s methodology, asks whether the networks have a
local preference for or against gapped continuations that might make them succeed or fail for the
wrong reasons.

Consider again (5) (= I know who [John’s talking to —__ ] is going to annoy *you/v’
soon). A sufficiently strong local preference about the critical area can affect a given ANN’s
success regardless of whether it has acquired any approximation of PGs, or of wh-movement in
general. It could be, for example, that the ANN assigns a higher probability to the grammatical
continuation soon than to the ungrammatical you but that it does so because it ignores the filler
(who) altogether and simply prefers annoy soon to annoy you. Conversely, it is conceivable that
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the ANN has, in fact, acquired knowledge of wh-movement but that it incorrectly prefers you to
soon because of similarly irrelevant reasons. For example, perhaps it has a strong preference for
ungapped continuations in general, or perhaps it has such a preference in the present case because
the lexical frequency of you is very high.

To what extent might such local preferences affect the ANNs? We are not entirely sure. A
good enough learner would presumably not get confused by such irrelevant factors, and the fact
that all our models perform well on very simple filler-gap dependencies as illustrated in figures
1 and 2 is at least suggestive of their ability to overcome any such confusion when the training
data are sufficiently rich. However, beyond this suggestive evidence it is hard to tell whether
current ANNs are good enough learners in this sense, and it strikes us as reasonable to further
investigate possible confusion by irrelevant factors that might override the preference for the
correct pattern.

Following WFL, we will explore the possible effect of irrelevant factors of the kind just
mentioned by looking at each LLM’s preference for gapped over ungapped continuations and
comparing this preference when there is an upstream filler and when there is no such filler. When
an upstream filler is present, the model’s preference for a gapped continuation (e.g., annoy soon)
over the ungapped continuation (annoy you) should be stronger than when an upstream filler is
absent. In other words, we will be looking at whole paradigms of the shape we already saw in
(1) and not just at those portions of the paradigm in which a filler is present. Such a paradigm
is illustrated for PGs in table 4 and for ATB movement in table 5.

Extending our lenient condition for success used above, we will now consider it a success
for a given model on a particular paradigm if its preference for the gapped continuation (regardless
of its absolute magnitude or even its sign) is higher in the presence of an upstream filler than
in its absence. Above we introduced the notation A = Surprisal(ungapped continuation|shared
prefix) — Surprisal(gapped continuation|shared prefix) for the extent of the preference for the
gapped continuation over the ungapped continuation, and we wrote A, 4, when the shared prefix
had an upstream filler. We will now consider also the analogous A_g,,, for the part of the
paradigm where the shared prefix does not have an upstream filler. And we will consider it a

Table 4

Example paradigm for parasitic gaps. Underlined words indicate the *filler
alternations. Boldfaced words indicate the critical region that shows whether
the continuation is gapped or not.

+gap —gap
“Hiller I know who John’s talking *I know who John’s talking
to is going to annoy soon. to is going to annoy you
soon.
—filler *I know that John’s talking I know that John’s talking
to Mary is going to annoy to Mary is going to annoy

soon. You soon.
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Table 5

Example paradigm for across-the-board movement. Underlined words
indicate = filler alternations. Boldfaced words indicate the critical region
that shows whether the continuation is gapped or not.

“+gap —gap
+Hiller I know who John met recently *1 know who John met
and is going to annoy soon. recently and is going to
annoy you soon.
—filler *] know that John met Bob I know that John met Bob
recently and is going to annoy recently and is going to
soon. annoy you soon.

success for the model if Az, > A_zy.,. This lenient condition of cross-paradigm success follows
the logic of difference-in-differences and is very much in line with WFL’s evaluation.'®

In order to test the models across a large number of paradigms, with many different lexical
choices, we used the same grammars mentioned in section 4.2. In our earlier discussion, we used
the +filler pairs generated by the grammar. In the present section, we also use the corresponding
—filler pairs, and from each paradigm of +filler and —filler pairs we compute A. gy, values.
Excerpts from the grammars are provided in table 2 (for PGs) and table 3 (for ATB movement).

Figure 6 plots the LLMs’ performance for the cross-paradigm (difference-in-differences)
condition. All models except CHILDES LSTM have higher scores for the present measure of
Al fisier > A_gye, than they did for the earlier measure of Az, > 0 (figure 5), and this holds
for both PGs and ATB movement. However, only GPT-j and GPT-3 obtain scores that are convinc-
ingly high. But GPT-j is trained on the equivalent of 500 lifetimes of human linguistic exposure,
and GPT-3 is trained on the equivalent of 141 lifetimes and fine-tuned further on downstream
language tasks. Even GPT-2, trained on the equivalent of 10 lifetimes—and thus two orders of
magnitude at least above what children hear by the time they have knowledge of PGs and ATB
movement—only reaches modest scores, below 80%. And the smaller models obtain much lower
scores. This includes the English Wikipedia LSTM and Transformer, whose training corpus corre-
sponds to about 8 years of linguistic exposure, arguably the most realistic developmentally in
terms of size of all the models.

The gradual improvement of LLLM scores as the corpora become very large suggests that
current models are in principle capable of improving their approximation of the pattern of wh-
movement, but also that this improvement requires much more information than what is present
in a corpus that corresponds to anything a child might encounter. We return in the next section
to the potential of richer training data to improve an LLM’s approximation of the patterns under

18 Of course, this new criterion still allows for various irrelevant factors to affect success. For example, a model
could become successful simply by deciding that who corresponds to a high probability for soon and a low probability
for you anywhere in the sentence and that that corresponds to the opposite. We set aside such worries here.
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Figure 6

Model accuracy on the difference-in-differences condition for the parasitic gap (PG) and across-the-board
(ATB) datasets. Accuracy is measured as the ratio of cases where A s, > A_zy,,, that is, when the model
shows a relative higher preference for a gap when the gap follows a filler than when it does not.

consideration. In the meantime, we conclude that even with considerable help at test, the perfor-
mance of the LLMs provides no evidence against the APS.

5 A General Inability to Acquire a Suitable Preference?

Recall WFL’s contention that LLMs show that a linguistically neutral learner can acquire knowl-
edge of wh-movement from a realistic corpus. In the face of our results from the previous section,
WFL’s claim needs to be abandoned: current LLMs provide no basis for such a conclusion. Of
course, this is not the same as saying that LLMs provide evidence for the APS: the failure of the
LLMs might be due entirely to their own limitations and not be informative about the richness
of the training corpora. In the present section, however, we will go one step further and provide
tentative evidence that the failure of the LLMs is due also to the insufficient richness of the
training corpora and not just to weaknesses of the ANNs. We do so by helping one of our models
at training: we retrain the Wikipedia Transformer model on an enriched corpus that includes
multiple instances of PGs and ATB movement. As we show, the performance of the model
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improves significantly on the enriched corpus, suggesting that the failure on the original corpus
reflects the poverty of that corpus.

The additional instances for the enriched training corpus were generated by template, using
a variant of the CFGs that we used in sections 4.2 and 4.3. To increase the probability that an
improved performance by the model would reflect generalization rather than memorization, the
structure of the additional instances was different from that of the test sentences from section 4.3.
Specifically, we made the additional sentences slightly simpler than the test sentences, focusing
on the transitive verb whose object position forms the second gap (the main gap in the PG examples
and the second-conjunct gap in the ATB movement examples): while in the test sentences the
relevant transitive verb is always embedded under at least a raising predicate (e.g., likely) and
sometimes under additional clauses, in the additional training sentences such embedding is absent.
Example training and test sentences are given in table 6. The full CFGs used in creating the
additional instances are given in online appendix C.

From each CFG of each phenomenon (PGs/ATB movement), we sampled 100 sentences
for the two grammatical conditions (+filler, +gap, and —filler, —gap ), totaling 200 extra sentences.
These sentences were added to the original English Wikipedia dataset, and the model was trained

Table 6

Example training and test sentences for the retraining task in section 5. A
sample of simplified training parasitic gap (PG) and across-the-board (ATB)
movement sentences were added to the model’s original training data (English
Wikipedia), and the model was then tested on the full battery of sentences
from section 4.3. The full context-free grammars for the training and test
datasets are given in online appendices A and C.

Training examples

[ know who John’s attitude towards upset yesterday.

* I know who John’s friendship with will annoy soon.

* [ know who John’s praising of amused lately.

Test examples

* I know who John’s talking to is about to bother soon.

* [ know who John’s playing with is going to annoy eventually.

* [ know who John’s failure to dance with is going to disturb soon.

PG

Training examples

* | know who John saw yesterday and kissed today.

* [ know who John helped recently and married today.

ATB * I know who John hugged often and will insult soon.
Test examples
* | know who John met recently and is going to complain to
Patricia about soon.
* | know who John said that Mary saw lately and is going to be
glad to hug now.
* [ know who John asked Mary about lately and is going to claim
that Patricia will hug today.
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Figure 7

Accuracy for the retrained Transformer model, when trained on the original Wikipedia vs. when trained on
the same dataset with extra parasitic gap (PG) and across-the-board (ATB) sentences. The left figures plot
accuracy for the + filler condition, and the right figures plot accuracy for the difference-in-differences con-
dition.

using the same regime as in Yedetore et al. 2023 (itself based on the training regime in Gulordava
et al. 2018). The model was trained for 48 hours or until reaching the early-stop condition from
Yedetore et al. 2023, which stops the training if the validation loss does not improve for more
than two consecutive epochs. Due to the long training times of the model, the results reported
here are for one random seed with no hyperparameter search. Since the goal of this experiment was
to demonstrate the model’s ability to improve significantly given more data, this was sufficient.

The model’s performance on the training and test set, before and after retraining, is visualized
in figure 7.

For both ATB movement and PGs, the performance of the model improves significantly.
For ATB movement, the raw Az, > 0 accuracy score improves from 13.7% to 35.8%, and
the difference-in-differences A 4., > A_z., score improves from 56.7% to 97.2%. This is a
dramatic improvement over the performance of the model on its original corpus and is higher
than the performance of other architectures when trained on a much larger corpus. For PGs, the
raw score improves modestly, from 1.3% to 5.3%, while the difference-in-differences score im-
proves from 14.4% to 65.5%. The raw score for PGs certainly doesn’t inspire confidence that
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the model has acquired the dependency. Recall, however, that this is not what we were after here.
Our question was whether the model is so weak that its poor performance when trained on the
original corpus reflects its inability to do better. The retraining results show that the model can
do considerably better once the corpus is sufficiently rich.

Caution is required in interpreting this result. Like all current LLMs, our model is opaque,
and we are limited in the conclusions that we can draw from it. In particular, while we observe
that the model’s performance improved when retrained on a corpus that was enriched in a certain
way, it is possible that there are other kinds of evidence for the patterns under consideration that
a good general-purpose learner would be able to make use of and that our model cannot. What
we found is consistent with such evidence being in the original corpus. Our use of retraining
data that were structurally different from the test data was aimed at lessening this worry, since
improvement suggests an ability to generalize and not just memorize. This, in turn, increases the
plausibility that the model would have been able to generalize from other kinds of relevant
examples if the original corpus had been sufficiently rich. But the opacity of the model prevents
us from saying more, and our results here must be qualified accordingly.

6 Conclusion

The APS has been central to linguists’ reasoning about innateness for a long time. It has always
been difficult, however, to estimate just how much information a linguistically neutral learner
might hope to extract from a realistic input. Modern ANNs promise to change this, and their
linguistic knowledge and learning have been the topic of research of a growing literature. We
focused here on work by WFL, who use LLMs to argue that the stimulus is rich enough when
it comes to wh-movement and that this dismantles the APS in this domain. We showed that this
conclusion is premature: by looking at PGs and ATB movement, we showed that several ANNs
fail to reach a passable approximation of the pattern of wh-movement.

Is it possible that some future linguistically neutral learner will succeed where the models
that we have examined have failed? Of course. As we mentioned, current models are too opaque
and too poorly understood (and current training corpora are too unrealistic developmentally) to
definitively settle the question of whether the APS for wh-movement holds. We note, however,
that the architectures we have considered are generally successful in approximating many other
aspects of linguistic data and that we evaluated the models using an extremely lenient criterion
for success. And some of the models have been provided with very generous amounts of linguistic
input, in some cases several orders of magnitude beyond what children receive. Given that none
of the ANNs reached an adequate approximation of the pattern for the relatively simple examples
that we have considered—and given that at least one network did seem capable of improving
its approximation when retrained on a clearly rich corpus—we find it likelier that the stimulus
is simply too poor to warrant the acquisition of the relevant aspects of knowledge from a corpus
that is even remotely realistic developmentally by a linguistically neutral learner. And if that turns
out to be the case, adult speakers’ knowledge of these aspects is evidence that children are innately
endowed in ways that are not linguistically neutral.
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