Prof. Amir Levinson works on problems at the forefront of high-energy astrophysics, including: modeling of black hole activation; formation, dynamics and emission of relativistic jets, and applications to AGNs, microquasars and gamma-ray bursts; theory of radiation-mediated shocks and its application to shock breakout in various stellar explosions and to photospheric emission in GRBs; numerical simulations of AGN wind feedback in young galaxies; magnetar models of fast radio bursts.
Research achievements include: development of analytic and numerical methods that enable detailed calculations of the structure and emission of radiation-mediated shocks during breakout from exploding stars, in an attempt to predict the breakout signal in SNe and GRBs; studies of photospheric emission in GRBs from first principles; first-ever general relativistic particle-in-cell simulations of plasma production and consequent gamma-ray emission in a starved black hole magnetosphere, and its implications for gamma-ray emission from radio galaxies and RIAF sources, as well as for the physics involved in the production of Blandford-Znajek jets. Much of this work is in progress and its development continues.